The average number of torsion points on elliptic curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsion Points of Elliptic Curves

Elliptic curves as an area of mathematical study are initially simple to understand, but reveal startling complexity when considered over different fields. This paper discusses the general properties and characteristics of projective space, elliptic curves, and the group structure that arises with certain binary operations on the curve. We discuss elliptic curves over Q, including the topic of ...

متن کامل

Torsion points and matrices defining elliptic curves

Let k be an algebraically closed field, char k 6= 2, 3, and let X ⊂ P be an elliptic curve with defining polynomial f . We show that any non-trivial torsion point of order r, determines up to equivalence, a unique minimal matrix Φr of size 3r×3r with linear polynomial entries such that det Φr = f . We also show that the identity, thought of as the trivial torsion point of order r, determines up...

متن کامل

The Average Number of Integral Points on Elliptic Curves Is Bounded

We prove that, when elliptic curves E/Q are ordered by height, the average number of integral points #|E(Z)| is bounded, and in fact is less than 66 (and at most 8 9 on the minimalist conjecture). By “E(Z)” we mean the integral points on the corresponding quasiminimal Weierstrass model EA,B : y2 = x3 + Ax + B with which one computes the naı̈ve height. The methods combine ideas from work of Silve...

متن کامل

Torsion Points on Elliptic Curves with Complex Multiplication

i.e., the supremum of all orders of torsion points on elliptic curves defined over some degree d number field. Write T (d)′ for the set of prime divisors of elements of Td, and P (d) for the largest element of T (d)′. Let TCM(d) (resp. TIM(d)) be the subset of T (d) corresponding to elliptic curves with complex multiplication (resp. with algebraic integral modulus j(E)), and similarly adding th...

متن کامل

Elliptic Curves with Maximal Galois Action on Their Torsion Points

Given an elliptic curve E over a number field k, the Galois action on the torsion points of E induces a Galois representation, ρE : Gal(k/k) → GL2(b Z). For a fixed number field k, we describe the image of ρE for a “random” elliptic curve E over k. In particular, if k 6= Q is linearly disjoint from the cyclotomic extension of Q, then ρE will be surjective for “most” elliptic curves over k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2014

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2013.08.004